Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics.

نویسندگان

  • Xiaowei Guan
  • Yunhong Ding
  • Lars H Frandsen
چکیده

An ultra-compact and broadband higher order-mode pass filter in a 1D photonic crystal silicon waveguide is proposed and experimentally demonstrated. The photonic crystal is designed for the lower order mode to work in the photonic band gap, while the higher order mode is located in the air band. Consequently, light on the lower order mode is prohibited to pass through the filter, while light on a higher order mode can be converted to a Bloch mode in the photonic crystal and pass through the filter with low insertion loss. As an example, we fabricate a ∼15-μm-long first-order-mode pass filter that filters out the fundamental mode and provides a measured insertion loss of ∼1.8  dB for the first-order-mode pass signals. The extinction ratio is measured to be around 50 dB (with a variation of ±10  dB due to the detection limitation of the measurement setup) in the measured wavelength range from 1480 to 1580 nm. Additionally, calculations predict the extinction ratio to be larger than 50 dB in a 170 nm broad bandwidth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mode-Evolution-Based, Broadband 1x2 Port High-Pass/Low-Pass Filter for Silicon Photonics

We demonstrate integrated, mode-evolution-based, 1x2 port high-pass/low-pass filters in a silicon photonics platform that can simultaneously achieve broadband operation, single cutoff wavelength, and a record high filter roll-off of 2.5 dB/nm for the first time. OCIS codes: (130.7408) Wavelength filtering devices; (230.1360) Beam splitters; (130.3120) Integrated optics devices.

متن کامل

Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces.

We report on the design and characterization of focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces. With implementation of waveguide dispersion engineered subwavelength structures, an ultra-wide 1-dB bandwidth of over 100 nm (largest reported to date) near 1550 nm is experimentally achieved for transverse-electric polarized light. By tapering...

متن کامل

A Compact Wide Bandpass Filter based on Substrate Integrated Waveguide (SIW) Structure

In this pare, a wideband three-order bandpass filter (BPF) is proposed. The proposed wideband filter is designed using the substrate integrated waveguide (SIW) structure by loading T-shape slots. A BPF with two resonators is formed by etching T-shape slots with different size on the top metal plane of the SIW structure. The filter is investigated with the theory of coupled resonator circuits. T...

متن کامل

Compact and broadband polarization beam splitter based on a silicon nitride augmented low-index guiding structure.

We propose a compact polarization beam splitter (PBS) based on a silicon nitride enhanced silicon-on-insulator platform using an augmented low-index guiding (ALIG) waveguide structure. In the ALIG structure, the TM mode is mostly confined in the low-index silicon nitride, while the TE mode is confined in the high-index silicon. Since the two modes are confined in two separate layers, their prop...

متن کامل

Dual-Band Evanescent-Mode Substrate Integrated Waveguide Band-pass Filter for WLAN Applications

A new multi-layer substrate integrated waveguide (SIW) structure is developed to design dual-band evanescent-mode band-pass filters (BPFs). Two independent series LC circuits are implemented by incorporating metallic irises in the different layers of the structure. The combination of the metallic irises with capacitive-plates is embedded inside the SIW to independently excite two evane...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 40 16  شماره 

صفحات  -

تاریخ انتشار 2015